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1. ABSTRACT

In complex real-world environments, traditional (tabular)
techniques for solving Reinforcement Learning (RL) do not
scale. Function approximation is needed, but unfortunately,
existing approaches generally have poor convergence and op-
timality guarantees. Additionally, for the case of human
environments, it is valuable to be able to leverage human
input. In this paper we introduce Expanding Value Func-
tion Approximation (EVFA), a function approximation al-
gorithm that returns the optimal value function given suffi-
cient rounds. To leverage human input, we introduce a new
human-agent interaction scheme, training regimens, which
allow humans to interact with and improve agent learning in
the setting of a machine learning game. In experiments, we
show EVFA compares favorably to standard value approx-
imation approaches. We also show that training regimens
enable humans to further improve EVFA performance. In
our user study, we find that non-experts are able to provide
effective regimens and that they found the game fun.
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1.2.6 [Artificial Intelligence]: Learning—Reinforcement
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2. INTRODUCTION

Our research goals center around deploying agents in hu-
man environments, e.g., robotic assistants in homes, schools,
or hospitals. It is intractable to pre-program a robot with
every skill necessary in these domains, thus we focus on ways
to allow agents like these to learn and adapt.
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Reinforcement learning (RL) is a broad field that defines
a particular framework for specifying how an agent can act
to maximize its long-term utility in a stochastic (and per-
haps only partially observable) environment. Approaches to
RL typically focus on learning a policy, a reactive plan that
accomplishes specific goals (expressed implicitly through a
reward signal).

Traditional RL techniques depend on tabular representa-
tions. However, when faced with large state spaces, these
techniques become intractable and it becomes necessary to
approximate the value function, policy, or both. Addition-
ally, we recognize that in many real-world environments,
agents will be learning in close proximity to humans who
can help improve their performance. Thus, learning to take
advantage of human input also arises as a research goal.

Introducing approximations into RL techniques is, un-
fortunately, not straightforward. While tabular techniques
have been shown to have many desirable properties such
as convergence and optimality, the use of even simple ap-
proximations introduce errors which jeopardize these prop-
erties. This can occur even if the best approximation is
found at each step before changing the policy, even over
many different notions of “best”, from mean-squared-error
to residual-gradient [12]. Subsequently, there has been much
study in making effective use of approximations. Sutton et
al. showed that if the policy representation is differentiable,
gradient descent can be used to converge to a local opti-
mum [12]. Gordon showed that specific types of approxi-
mators known as “averagers” (non-expansive in max norm,
linear and monotone) maintain convergence [7]. Boyan pre-
sented a method for function approximation that does not
rely upon intermediate value functions and showed that it
terminates [4]. It is this last approach that we will focus
on. In this paper, we introduce expanding value function
approximation (EVFA), a function approximation scheme
based on Boyan’s work that is guaranteed to terminate and
achieve the optimal policy, given sufficient rounds, and any
learner capable of representing the true value function.

While we will show that EVFA has good performance, we
would like to be able to leverage available human input to
further improve that performance. A variety of methods for
applying human input have been explored. One common
method is demonstration, where solutions to example prob-
lems are shown to the learner. Other methods have humans
decompose problems so the learner need only solve a series of
small problems (e.g., hierarchical decompositions [5], goal-



based decomposition [8], or explicit training of skills [11]).
Still other methods, like reward shaping [6] leverage human
input to guide agent exploration. In this paper, we introduce
a new interaction scheme whereby a human teacher helps
the agent learn by providing a series of increasingly difficult
problem instances, a training regimen. This is much like pro-
viding demonstrations, but without the burden of having to
provide solutions. The agent must instead learn every step
by itself. To explore this interaction mode, we built a video
game for training agents much like the NERO video game
[11] which similarly falls under the genre of machine learn-
ing games. Experiments show that human input improves
learning performance over the baseline. In our user study,
we find non-experts able to provide effective training that
improves agent performance. Most participants also report
agreeing that the game is fun.

In summary, to tackle complex domains, we introduce a
new algorithm to improve function approximation. For the
case when the target domain is a human environment, we
present training regimens as a mechanism for leveraging hu-
man input to further boost performance.

3. PRELIMINARIES

We define a finite Markov Decision Problem (MDP) M =
(S, A, P/, R:,v) by a finite set of states S, a finite set of
actions A, a transition model P, = Pr(s’|s,a) specifying
the probability of reaching state s’ by taking action a in state
s, a reward model R = r(s,a) specifying the immediate
reward received when taking action a in state s, and the
discount factor 0 <~ < 1.

In this work, we focus on episodic MDPs, i.e., MDPs with
absorbing or “goal” states. To ease discussion, we will as-
sume (without loss of generality) that rewards are strictly
negative. This will allow us to speak more intuitively in
terms of cost, ¢ = —r, rather than rewards.

A policy, m : S — A, dictates which action an agent should
perform in a particular state. The distance or walue of a
state J™(s) is the expected sum of discounted costs an agent
receives, when following policy 7 from state s. J*(s) is the
value of state s when an agent follows an optimal policy
that minimizes long-term expected cost (maximizes long-
term reward). Value iteration is an algorithm for computing
J*.

4. EVFA

Standard approaches to RL (such as value iteration) re-
quire intermediate value and policy functions. When using
function approximation with these approaches, not only do
we need to accurately approximate the final function, but
all intermediate functions as well. This can be problematic
as intermediate functions can vary wildly and are sensitive
to initial values. In practice, this often results in erratic
behavior. Often, one run can converge to a good policy
while another run may fail completely. Sometimes, adding
an additional feature to the feature set can trigger complete
failure. This makes using RL with function approximation
difficult.

While much progress has been done toward mitigating
this effect, there is another line of work that avoids it alto-
gether [3]. We call this approach “expanding” as opposed to
“iterating” because it works by expanding an accurate ap-
proximation of limited size across the state space until it
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Figure 1: Iterating (top) vs Expanding (bottom)
Value Function Approximation

covers the entire space, as opposed to starting with a poor
approximation of the entire space and iteratively improving
its accuracy.

Figure 1, based on illustrations in [4], shows how the two
approaches differ. Notice how the expanding approach only
ever attempts to model the optimal value function, albeit
incompletely at first. We can summarize the benefits of the
expanding approach over the iterative approach as follows:

e Eliminates intermediate functions as an error source.

e Offers potential computational benefits as we do not
have to learn or represent intermediate value functions.

e Has better anytime behavior: the expanding approach
always has an accurate (though partial) value func-
tion. By contrast, an intermediate value function of
an iterative framework can be arbitrarily bad.

Our work is an extension of Boyan’s [3] to general, goal
based MDPs. Note that although we focus on value function
approximation, the same technique can be similarly applied
to policy approximation as well.

4.1 Previous work

Boyan’s work is based on the idea of maintaining a “sup-
port” set of states whose final J* values have been computed.
When function approximation is performed, it is trained on
just this set. Thus, in effect, the support set represents the
region of space that has been approximated. The support
set starts with just the terminal states and grows backwards
until it covers the entire state space. Expansion or growth
of the support set/approximated region is accomplished by
computing, via one-step backup(s), the value of states whose
next state(s) can be “accurately predicted” by the function
approximator. These states and their computed values are
then added into the support set. Whether a state’s value
can be “accurately predicted” is decided by performing roll-
outs — simulated trajectories guided by the greedy policy
of the approximated value function. If the rollouts verify
the estimated value of the state, it is considered “accurately
predicted”.

Boyan presents two algorithms, “Grow-Support” and “ROUT” [3],

based on this basic workflow. Unfortunately, the algorithms
have some limitations. “Grow-Support” requires determinis-
tic domains. “ROUT” can handle stochastic transitions, but
only in acyclic domains. Beyond these restrictions, the algo-
rithms are also not guaranteed to return the optimal policy.
Our approach resolves these issues.



Goal

Figure 2: Hallway with nondeterministic ice-patch
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Figure 3: Hallway with teleporter to goal at far left.
All actions have unit cost

4.2 Removing domain restrictions

Grow-Support and ROUT only work on deterministic/acyclic

domains because they use one-step backups to expand the
approximation. For nondeterministic domains, the algo-
rithms may prematurely terminate because they have reached
a point where all states on the fringe of the approximated
region have values dependent upon states outside. Figure 2
illustrates this problem: from the ice-patch state, all actions
have a chance of going left, making its value impossible to
compute without first knowing the value of the state left of
it. Since the function approximator grows from the right, it
can never grow past this point.

To solve this problem, we rely not on single step backups
to compute values, but full MDP solvers. For computational
tractability we only use solvers that take advantage of the
start state (or set of start states) such as Real-Time Dy-
namic Programming [2] (RTDP). We call these single source
solvers (SSS). In general, solving the value of a single state
can be as difficult as solving the value of all states (e.g.,
fully connected domains). In practice however, domains are
rarely fully connected. Typically, nondeterminism is local-
ized. SSS are also relatively insensitive to the size of the
state space; rather, they depend on the length of the prob-
lem. By taking advantage of these two attributes, we can
make SSS efficient at computing the value of a state as long
as the length of the problem is short.

4.3 Solving for the optimal policy

In order for EVFA to work, we must expand the approxi-
mated region. To do so in a tractable manner, we rely on the
estimates of state values inside the region to compute state
values outside. Since there may be errors in the approxima-
tion, we must verify any value estimates. “Grow-Support”
and “ROUT” rely on rollouts and Bellman errors to verify
value estimates. However, it is important to recognize that
these procedures only verify an upper bound on the distance,
not the actual distance. Figure 3 illustrates this problem.
After adding (state, distance) pairs (A,1) and (B,2) into the
support set and training the function approximator, state
C will appear correctly approximated and pass verification
with distance 3 (C — B — A — Goal). In fact
however, state C is not correctly approximated as its true
value is 2 (C' — Teleport — Goal). Previous work does
not address this problem. As a result, they are susceptible
to over-estimation errors that may persist and spread over
expansions.

In our work, we mitigate this effect by adding the ability
to detect and correct errors. We do so in two ways. First,
whenever the value of a stated is queried, it is computed
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by a local refinement over the output of the value function
approximator. This is done even if the surrounding states
have been verified. If the approximated value and the refined
value differ, the lower value is returned!. In our algorithm,
we mark states within some distance of the queried state
and do not use approximator estimates (even if verified) on
these marked states. This ensures a local region surround-
ing the queried state is computed from scratch rather than
taken from the function approximator. Second, whenever
these discrepancies are encountered, we shrink the effective
region of the approximator and invalidate all values in the
support set greater than refined value. This mitigates error
propagation.

4.4 Speeding up verification

Value estimate verification is frequently required and can
be expensive in non-deterministic domains. We would like
to reduce the number of times it must be called. To this end,
we introduce the concept of assigning a maximum effective
region of the predictor (MERP), to all trained approxima-
tors. The MERP describes, in terms of distance to the goal,
the region within which the approximator is accurate. If the
function approximator is asked to estimate the value of a
state and returns a value greater than MERP, we can im-
mediately conclude that our estimate is inaccurate without
needing to perform verification. The verification procedure
is only performed when an estimate is within MERP and
thus may be accurate.

Introducing the MERP puts a hard limit on the effective
region of our trained approximators. Unlike Boyan’s algo-
rithms, in which the effective approximated region may be
amorphous, our regions are always strictly spherical, cen-
tered at the goal.

4.5 EVFA algorithm

EVFA (see Algorithm 1) starts with the support set, supp,
containing just the goal states, and expands it until we have
an approximator that is accurate over the entire state space.
To expand the approximated region, we sample a state, solve
it, and add the resulting state value pair as a new train-
ing example into supp. Eventually supp will grow large
enough to enable supervised learner L to produce an ac-
curate hypothesis (approximation of the value function), at
which point we can update the approximation and increase
its effective region.

Solving a state is performed by the SSS. In our work we
target large discretized domains and so a modified version
of RTDP is used. RTDP is modified in two ways. First,
its value table (excepting immediate region of radius r) is
initialized to h(s) where verified and to the optimistic esti-
mate merp otherwise. This initialization allows RTDP to
leverage the existing estimated region so it does not have to
search all the way to the goal. As soon as it hits a known-
valued state, we can act as if we have reached to goal, no
search past that known state is needed. This makes RTDP
fast. We do not use h(s) in the immediate region around s
in order to ensure local refinement, i.e., to find and correct
possible errors. The second modification we make to RTDP
is to employ a distance cap of radius r. If r is ever ex-
ceeded we consider the state too far to solve and return NaN.
Recall that SSS is only efficient at solving relatively short

!Both values are upper bounds, thus the smaller of the two
is the tighter upper bound.



Algorithm 1 EVFA

Require: MDP M, Learner L, n € N,
r€Rso, € (0,1, e eR
supp < {(s,0)|s is a goal of M}
backup < ()
h «<— NULL
merp «— 0
for i=0ton do
s «— random state from M
j < 88S(s, h, merp, r, €)
if j = NaN then
continue
else if (s,oldj) € supp where oldj — j > 2¢ then
merp — floor(j/r)r
backup «— {(s,x) € supp|z > merp}
supp < {(s,z) € supp|z < merp}
supp < add (supp, (s,7))
scourBackup (backup, supp)
else
supp < add(supp, (s, min(j, old)))
trainset, testset < randsplit (supp)
h' «— L(trainset)
if test (W, testset, @) then
h—h
merp «<— merp +r
scourBackup (backup, supp)
end if
end if
end for
return h, merp

problems. We would much rather solve long problems by
repeatedly expanding the approximated region from solving
short problems than solving them directly with SSS. The
distance cap, r, allows us to control the expansion step-size.
A large r allows distant problems to be solved and trained
on. This means a larger expansion, but computing the so-
lution to each problem will take longer. We can also view r
as imposing a distance based decomposition on the MDP so
that RTDP is only ever asked to provide solutions to incre-
mental problems. In this view, r controls the granularity of
that decomposition.

We do not train L on the whole of supp. Instead, some
portion is held out to use as a test set. To test a hypothesis,
we measure the percentage of states from the test set whose
values can be verified via rollouts or similar procedure. If
the percent verifiable exceeds «, our precision parameter,
we consider the test passed and expand the approximated
region.

Errors may exist in supp. They are found when we com-
pute a value that is significantly (by twice the SSS precision
€) lower than the one stored in supp?. When such an error
is encountered, a multi-step process we call a “merp regres-
sion” occurs. First, we reset the merp to the last radius
multiple before the error. Second, state value pairs whose
value are greater than merp are removed from supp as the
error may have propagated to them. These pairs are backed
up in backup. Finally, they may later be added back to supp

2To see why, consider that all values produced by SSS must
be upper bound as SSS itself is sound and it relies on verified
values which are guaranteed to be upper bounds
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by scourBackup. scourBackup is a procedure which runs
SSS on every state in backup. Those that can be solved are
added back into supp.

In actual implementation, we make a few optimizing changes.

First, because (re)training the function approximator can
be time consuming, we only train after many states have
been added to the support set. States whose values are al-
ready accurately predicted by the hypothesis do not count.
This change not only makes training more efficient, but also
means we can rapidly expand the effective region and only
train when we bump up against errors in the approximator.
Second, we modify RTDP such that it returns not just the
value of the start state, but the values of all states along
the optimal path to the goal. If the RTDP solution ends
in an estimated region, we use the verification procedure to
produce the values of states along the optimal path from the
beginning of the region to the goal. We then add all these
state-value pairs into the support set. This modification
makes training example generation more efficient. Finally,
having to specify the number of expansion rounds to run is
troublesome. Instead, we use a stopping condition. Given a
randomly chosen “bench” set of states, the algorithm is run
until the percentage of states whose values can be verified ex-
ceeds . This ensures, with high probability, the estimated
region covers the entire space.

4.6 Optimality

Optimality is guaranteed probabilistically. For ease of dis-
cussion we will use unequivocal terms such as “perfect”, but
we mean this in a probabilistic sense as in the probability of
error(s) approaches zero.

Observe that merp must always be a multiple of radius r.
For convenience, we will refer to merp by level | = merp/r
where [ is a natural number.

We make the following assumptions: (1) PAC learner L,
(2) hypothesis space of L contains J*, and (3) radius r is
large enough to guarantee SSS can always solve some states.

THEOREM 1. Given sufficient rounds, EVFA will produce
(h,merp = kr) or simply (h, k) such that with high probabil-
ity h(s) = J"(s) when J*(s) <= kr, for all natural numbers
k.

PROOF. Suppose there exists a k such that EVFA never
produces a perfect (h,k) no matter how many rounds are
run. Given our radius assumption, some states will be solv-
able by SSS. If the solution does not identify an error in
supp, the state value pair will be added to supp. If we find
no errors in supp for many consecutive rounds, supp can
grow arbitrarily large. It also implies that supp contains
no errors. Given sufficient rounds under these conditions,
learner L will produce highly accurate hypotheses. This
means we can grow merp to arbitrary sizes. As a result we
must always periodically find errors in supp.

SSS guarantee computed values to be upper bounds and
the state space is finite; as long as values are not forgotten,
there can only be a finite number of (downward) corrections
before supp must be correct. In EVFA| if a state value pair
must be removed from supp, it is archived in backup and
later added back in. Thus after a finite number of rounds
supp must be correct. However, this contradicts our previ-
ously derived result that we must periodically find errors in
supp. Thus our assumption must be incorrect. [

The proof requires that the hypothesis space of L contain



J*. In practice, we only need L to contain a hypothesis
reasonably close to J*. This is controlled by the precision
parameter «. If the hypothesis space cannot express any
hypotheses reasonably close, EVFA will learn the largest
partial value function it can express. For example, if limited
to a linear model in a 2 room maze world, EVFA would
expand the value function from the goal until it reached the
entryway to the second room. At that point it would be
unable to expand further, because the nonlinearity of values
caused by the wall prevents some states from being verified,
causing the algorithm to halt.

EVFA optimality does not require any specific form for the
approximation algorithm. This means unlike iterative tech-
niques that are limited to linear architectures for stability,
we can use any PAC learner. This eases feature engineering.

S. LEVERAGING HUMAN INPUT

We introduce a new interaction scheme whereby a human
teacher helps a learning agent by providing a series of in-
creasingly difficult problem instances®, a training regimen.

We developed this interaction scheme when standard teach-
ing techniques proved difficult to apply to EVFA. Learning
by demonstration [1] for example, while rich in information,
requires the teacher to provide solutions to problems (typi-
cally by performing the task). This becomes burdensome in
complex domains that may require thousands of samples to
learn. Training regimens are much like demonstrations but
without the need to provide solutions. More importantly,
this enables augmentation techniques where the system can
help obtain sample problems so we need not literally spec-
ify thousands of training problems. Training regimens also
provide decomposition. However, unlike approaches that re-
quire specialized learners and frameworks (e.g., MAXQ hi-
erarchies [5]), regimens do so in a general fashion. This pro-
vides wider applicability and in particular, applies to EVFA.
Training regimens can also be seen as an alternative way
of guiding exploration. Unlike reward shaping where one
guides exploration indirectly by authoring a potential-based
shaping function [10], training regimens allows one to guide
exploration directly by giving samples of where the learner
should focus.

Training regimens provide many advantages to an auto-
mated solver:

Focus: Algorithms typically assume the goal is to solve all
instances (to find a policy over all states), and that all in-
stances are equally important. These assumptions are often
false. For example, we do not care about solving all chess
board positions, just those reachable. A properly-tailored
regimen increases learning efficiency by maximizing general-
ization while minimizing the number of instances the learner
must see and solve. For example one may provide a higher
density of examples in complex or important regions and
fewer examples elsewhere. In an interactive setting, the in-
stance chosen can be tailored to learner performance, e.g.,
highlight errors in the learned function. Finally, proper fo-
cus provides better measures of performance as it allows us
to weight errors based on importance.

Sampling: Function approximation approaches to solving
RL typically use random state sampling. Usually, the uni-

3Here, an instance refers to solving a RL problem wrt. a
specific start and goal state pair, such as the starting and
ending squares in a maze.
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form distribution is assumed. While we often assume this
sampling is inexpensive, domain constraints may make it
otherwise. Sampling is also difficult if we need to sample
according to some specific distribution. EVFA for example,
requires that we sample problem instances of particular dif-
ficulty levels at different times because the SSS has limited
range. To deal with these difficulties, rejection sampling
is commonly used. Unfortunately, depending on how well
the generative distribution matches the target distribution,
it can be very expensive to perform. Providing a training
regimen mitigates this need.

Decomposition: How one orders problem instances in a
regimen guides the learner. By ordering instances such that
more difficult ones build upon simpler ones, we can save
the learner significant work. Solving each new problem in-
stance will then only require incremental effort. We order
instances by distance so that solutions to distant problems
can take advantage of prior solutions to shorter ones. This
approach improves learning efficiency by relying on stitch-
ing value functions together rather than on specifics of any
particular learning algorithm used. As a result, it is more
widely applicable.

We implement the training regimen interaction as a video
game much like NERO. In the following sections we will give
a description of our game, explain our methods of specifying
training regimens, and discuss the results of our user study.

5.1 Description

Our game is based on a school metaphor. The human
takes on the role of a teacher or parent whose job it is to ad-
vance the agent (or student) through successive grades until
graduation where upon the agent can successfully perform
the target task. They are provided an interface where they
can give the agent a series of problem instances organized
as “homeworks”. They are also prompted to give “tests”,
sets of instances that are previously unseen by the agent to
measure the agent’s learning. When they deem the agent’s
performance sufficient, they can advance the agent into the
next grade. Finally, the agent may “flunk” out of a grade if
they are advanced prematurely. For EVFA, this corresponds
to a “merp regression” (see Section 4.5).

Figure 4 shows our game in the homework creation screen.
Our game uses the Wall-E domain. In this domain, the
agent, Wall-E, is on a spacedock and tasked with moving a
cube of trash from some location to the port (some other
location). It must then return to a charger. The domain
is discretized into a 12x12 grid. In the homework creation
screen, the human teacher must create many problem in-
stances which will, together, make up a homework given to
Wall-E when the “submit” button is pressed. We use the
game metaphor of a “level editor” for problem instance cre-
ation. Creating a level is simple. The human teacher simply
drags and drops various level building elements such as Wall-
E’s start and end positions and the cube’s start and end po-
sitions on to the board. The end positions correspond to the
port and charger. Once the level is setup, the teacher must
click the “Generate” button. This adds the level and many
similar ones to the homework. The generation mechanism
allows the teacher to create more than one homework prob-
lem per board setup. This process, which we call “regimen
augmentation”, decreases the workload of the teacher.

Recall that problem instances must be ordered by increas-
ing length. The “grade” that Wall-E is in controls the ap-
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Figure 4: The homework creation screen of our
game. The right panel holds our level building ele-
ments and instructions. The bottom panel collects
the problems generated. The main element of the
screen is a level map showing initial and end loca-
tions (ghosted icons)

proximate length of the problem. We enforce problem in-
stances of increasing length by starting the game with Wall-
E in the lowest grade, 1st Grade. In this grade, only the
shortest problems are accepted so the human teacher must
provide problems that are almost already fully solved. To
advance Wall-E and gain access to longer problems, the
teacher must give him homework(s) and evaluate his progress
via tests. A test is just like a homework but instead of solved
to generate training data, it is used to test the trained func-
tion approximator. If the function approximator fails the
verification procedure on a test problem, we mark it as Wall-
E having gotten the problem “wrong”. If Wall-E scores high
on tests then it means the trained approximator is accurate.
At this point, we can advance him to the next level. This
corresponds to updating the h and increasing the merp in
the EVFA algorithm.

The game ends when Wall-E can pass a “graduation” test
consisting of randomly chosen problems from the target task.
For our game the task is to teach Wall-E to move the cube to
the port and return to the charger subject to the following
conditions:

e Wall-E always starts in the warehouse

e The cube always starts in the warehouse

The charger must be located somewhere against the
left wall of the warehouse

The port must be located inside the loading area at
the bottom of the map

5.2 Regimen augmentation

Complex domains may require many training instances to
learn correctly. To require a human teacher to enter each
instance manually would be too burdensome. Instead, we
provide a system to augment human input so that many
instances can be generated from relatively little effort. We
explore two different forms of augmentation.
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The first form is called the “exemplar form”. The idea
is for humans to provide a few exemplar problem instances
and the system will fill in the rest. It works as follows. The
human teacher sets up a level as normal. When they hit
generate, we will add not only the specified level but many
similar levels automatically generated based on that level.
Similar levels are generated through two mechanisms. In
the random walk mechanism, short random walks are per-
formed from the start position to generate alternative start
positions and from the end position to generate alternative
end positions. The cross-product of these alternative posi-
tions form the resulting set of similar levels. The second
mechanism, random perturbations, generates similar levels
by directly perturbing the feature vector that encodes the
level. Some generated levels may not be valid. These are
detected and discarded.

The second form is called the “distribution form”. In this
form instead of specifying exemplars, we ask the human
teacher to draw or mark a region representing a distribution
from which the system can utilize random sampling to gen-
erate the levels. Since the state space is multi-dimensional
we ask the teacher to draw a region for each object in the
level. The region specifies how that object and its feature
encoding is distributed. The joint distribution is then com-
puted by the system and randomly sampled. Again, some
generated levels may not be valid, these are removed.

5.3 User study

We ran an user study on our game to see if non-expert
humans could play it to successfully train Wall-E, and to see
if they found the game fun. We hypothesized the affirmative
to both questions.

In the study, participants were first given instructions to
read and were left a few minutes alone to do so. The instruc-
tions begin by providing a back story to introduce the user
to their role as a teacher and the school-based context of the
game. It then explains that their objective is to teach Wall-E
and advance him through the grades towards the target task
(see above). To help ensure the participants are motivated,
we hold a competition among the Wall-Es trained by the
participants. The winner, as the instructions explain, wins
a $20 Amazon gift card. The rest of the instructions describe
the operation of various game interfaces and briefly explain
the expected progression. Namely, that Wall-E starts in 1st
Grade where he cannot solve but the simplest (shortest) of
problems but will be able to solve longer problems as he ad-
vances Grades. The instructions also warn that advancing
too quickly may result in Wall-E learning incorrect concepts
which may cause him to flunk out of later grades. To help
ensure participants understood the instructions, the experi-
menter also provided a brief demonstration highlighting the
more important interface elements. Participants were then
left to play the game. At the end of the study, an exit survey
(including demographic questions) and brief interview were
performed. Due to time constraints, we did not require par-
ticipants to complete the game. Instead, we allotted a max-
imum of one hour for each participant. Participants could
also choose to stop early.

We had 10 participants for our study. Participants were
drawn from the campus community. Their age ranged from
16 to 54. Education levels as reported on the exit survey
ranged from high school to PhD students. The survey also
asked participants to rate the level to which they agreed with



the statement “I found the game fun” on a Likert scale. 6
participants reported agreement or strong agreement while
3 reported some level of disagreement. Interviews revealed
some participants experienced confusion over what to do
which may have negatively influenced their experience.

To measure how well participants trained Wall-E, we looked
at how well their trained Wall-E performed and the number
of training examples users gave to reach that level of perfor-
mance. While participants gave varying amounts of training
to Wall-E, on average, Wall-E received 4,500 training exam-
ples whereupon he is able to solve approximately 15% of
randomly selected problems. By contrast, after the author
had given 5,800 training examples, Wall-E was able to solve
roughly 7% of the same randomly selected problems. From
this, we conclude that non-experts are capable of providing
effective training regimens.

It may seem surprising that non-experts produced better
performance than the authors. However, as authors, our
training regimens reflected a greater awareness of potential
“merp regressions”. To avoid this, we tended to give many
examples before advancing to ensure a properly trained pre-
dictor and avoid any regression. By contrast, users tended
to advance earlier and simply retrained when faced with re-
gression. This more aggressive approach led to higher sam-
ple efficiency.

With respect to overall performance, success rates of 15%
and 7% may seem low. However, these rates reflect training
set sizes of around 5,000 examples. As we see in Figure 5,
with 24,000 examples, we achieve optimal performance.

6. EXPERIMENTS

Our experiments are organized into two sections. In the
first section we seek to verify empirically the correctness
characteristics of EVFA. Experiments will be in simpler do-
mains and we will compare against various baselines. In
the second section, we will focus on how taking advantage
of human input can further improve EVFA performance.
Emphasis will be on comparing performance of EVFA with
and without human input of various forms. To demonstrate
scalability and robustness, we will also use a more complex
domain. For all experiments, EVFA used r = 7.0, a = 0.98,
and the regression tree algorithm GUIDE [9] as the learner.

6.1 Correctness

We used three domains to verify EVFA performance. The
first is a two-room, deterministic maze domain. It is a com-
monly used domain for evaluating function approximation
schemes because to the discontinuity the room divider in-
troduces into the value function. The second and third are
randomly generated mazes with non-deterministic wind ele-
ments. In a wind square, the agent has a 30% chance of be-
ing blown by the wind and move in that direction. 30% and
70% percent of the squares in the second and third mazes,
respectively, are wind or wall elements. Actions in the maze
are North, South, East and West. Rewards are uniformly
-1. A single goal is located at (0,0).

For baseline comparison, we used LSPI with varying num-

bers of RBFs. We use the RBF K(s,¢) = exp(—w)

2
where ED(-,-) is the Euclidean distance and ¢ is the2éaus—
sian center. To extend the RBF to state-action space we
duplicate it for each action. Specifically for each action u
and center ¢, we generate basis function ¢(s,a) = I(a =
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Table 1: Return of EVFA and LSPI variants on maze
domains, averaged over 10 runs

Algorithm Two Room | Rand 30 | Rand 70
EVFA 15 20 24
LSPI (10 RBFs) | 37 41 61
LSPI (20 RBFs) | 52 32 50
LSPI (40 RBFs) | 40 25 45
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Figure 5: Sample complexity of different variants of
EVFA

u)K (s,c¢) where I is the indicator function. Centers for
RBF's were randomly placed.

To obtain good performance from LSPI we had to try
multiple configurations. Specifically, for each LSPI variant,
we generated 20 center configurations. For each center con-
figuration, we ran LSPI 20 times with maximum iterations
set to 30. The best policy seen is returned. Table 1 shows
our results. EVFA dominates LSPI. Of particular interest,
is EVFA’s learning behavior in the Two-Room domain. It
is able to reach optimal after using its learner just twice.
This is because EVFA only (re)trains when it encounters
state values it cannot correct predict. As a result, after the
first few examples produce a hypothesis accurate in the first
room, EVFA expands without (re)training until it enters the
second room.

6.2 Interactive EVFA

In this section, we seek to empirically explore whether
human interaction can further improve EVFA performance.
We use the Wall-E domain for this series of experiments (see
Section 5.1). State is represented as the vector [Wall-EX,
Wall-EY, CubeX, CubeY, Holdingp, PortX, PortY, ChargerX,
ChargerY]. Holdingp is a binary feature indicating whether
Wall-E is currently holding the trash cube. Actions are
North, South, East, West, Load, and Unload. While our
user study suggests that non-experts are capable of provid-
ing effective training regimens, time constraints prevented
them from training Wall-E with enough examples for our
experiments. Thus for the experiments in this section, hu-
man interaction data was generated by the authors. In the
following figures, automated EVFA results reflect an average
over 10 runs, while interactive EVFA results reflect a single
run.

Figure 5 shows our sample complexity results. Both aug-
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Figure 6: Rejection sampling efficiency of different
variants of EVFA

mentation techniques outperform the automated baseline.
This makes sense as the human provided training regimen
can focus the learner on relevant areas of the state space and
allow it to ignore, for example, states in which the Wall-E
or the Cube is outside and above the warehouse entrance.
Interestingly the distribution form of augmentation outper-
forms the exemplar form. Detailed analysis of the training
examples generated shows that the exemplar form does not
generate data as evenly distributed as the distribution form.
As aresult, the function approximator does not learn as well
on the data generated by the exemplar form. This suggests
two possible issues with the exemplar form. First, using
random walks to generate similar states may bias the distri-
bution. Second, while humans may be capable of specifying
multi-dimensional regions of interest, they may be poor at
performing random sampling of that region.

Beyond the ability to focus the learner, we expect hu-
man augmented EVFA to show improved performance from
improved sampling efficiency. Recall that the automated al-
gorithm must use rejection sampling to obtain problems of
the appropriate difficulty. By contrast, humans can provide
it almost directly. Some small amount of rejection sampling
is necessary in performing augmentation of human input,
but this should be insignificant compared to the amount
required by the automated version. To explore this, we col-
lected statistics on the number of training examples each
sampled state generated. Figure 6 has our results. As ex-
pected, augmentation forms are far more efficient at gen-
erating samples. The automated version suffers the worst
performance at the beginning when the region of interest is
the immediate area surrounding the goal. This area is small
relative to the size of the state space. As EVFA expands the
coverage of the learned approximator, the region of interest
also expands, resulting in improved efficiency. This suggests
human guidance is more helpful at the beginning of learning.

7. CONCLUSION

In large, complex domains, tabular representations be-
come intractable and it becomes necessary to approximate
the value function. We introduced EVFA, an approach to
function approximation that avoids intermediate value func-
tions. EVFA has several desirable properties such as termi-
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nation and optimality. It also has better anytime behavior
and puts no limitations on the learning architecture used.
EVFA relies on SSS to do the heavy lifting. As a result, it is
not appropriate for some (e.g., fully connected) MDPs. In
practice however, we expect EVFA to perform well on most
domains.

For domains in human environments, leveraging human
input is important. We introduced a new human-agent in-
teraction mode: training regimens. This mode was success-
fully applied to EVFA where we were able to obtain im-
provement over the purely automated baseline. By embed-
ding this integration in a machine learning game we were
able to show that non-experts are able to provide effective
regimens. Training regimens are interesting because they al-
low a human to easy specify thousands of training examples
with relatively little effort. This allows a human to easily
focus agent learning on particular regions of a problem, and
provide inexpensive sampling and decomposition.
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